Sample efficient rich observation RL

Akshay Krishnamurthy
akshaykr@microsoft.com
RL theory vs practice

Theory
- Simple tabular environments
- Sophisticated, efficient exploration
- No generalization

Practice
- Complex rich-observation environments
- Generalization via function approximation
- (relatively) simple exploration

Can we design provably sample-efficient RL algorithms for rich observation environments?
Our goal

Provably efficient algorithms for rich observation reinforcement learning

1. Generalization via function approximation
2. Statistical efficiency
3. Computational efficiency
This talk

Part 1: Contextual decision processes and OLIVE
 • Provably sample efficient
 • Not computationally efficient
 • A new complexity measure

Part 2: Block-MDPs and PCID
 • Provably sample and computationally efficient
 • Less general
Formal model

For $h = 1, \ldots, H$:
- Observe context $x_h \in \mathcal{X}$
- Take action $a_h \in [K]$
- Receive reward $r_h \in \mathbb{R}$
- Transition to x_{h+1}

A policy $\pi : \mathcal{X} \rightarrow [K]$ has value $V(\pi) = \mathbb{E} \left[\sum_{h=1}^{H} r_h \mid a_h = \pi(x_h) \right]$.

PAC Learning: Find policy $\hat{\pi}$ such that:

$$V(\hat{\pi}) \geq V(\pi^*) - \epsilon$$

Sample complexity: Number of trajectories required.
Function Approximation

Realizability: assume $Q^* \in \mathcal{F}$

f induces policy $\pi_f(x) = \arg\max_a f(x, a)$
Bellman Equations and Validity

\[Q^*(x_h, a) = \mathbb{E} \left[\sum_{h'=h}^{H} r_{h'} \mid a_h = a, a_{h'} = \pi^*(x_{h'}) \right] \]

Optimality equation: \(\forall x, a \)

\[Q^*(x, a) = \mathbb{E} \left[r + Q^*(x', \pi^*(x')) \mid x, a \right] \]

Hard to use algorithmically with large \(\mathcal{X} \)

Weaker condition: \(f \) is valid if \(\forall g \in \mathcal{F}, \forall h \in [H] \)

\[\mathbb{E} \left[f(x_h, a_h) - r - f(x_{h+1}, \pi_f(x_{h+1})) \mid a_{1:h-1} \sim \pi_g, a_h \sim \pi_f \right] = 0 \]
On Validity

Idea: Find valid f, then use predictions to optimize for policy

Key issue: How to choose roll-in distribution g?

Answer: Optimism!

Q^* is always valid!

If f is valid, easy to estimate π_f's value:

$$f \text{ valid } \Rightarrow V(\pi_f) = \mathbb{E} \left[f(x_1, \pi_f(x_1)) \right]$$

For fixed (g, h), can check for all f with importance weighting

$$\mathbb{E} \left[f(x_h, a_h) - r - f(x_{h+1}, \pi_f(x_{h+1})) \mid a_1:h-1 \sim \pi_g, a_h \sim \pi_f \right] = 0$$
Repeat:
1. Pick $\hat{f} \in \mathcal{F}$ to maximize $\mathbb{E}\left[f(x_1, \pi_f(x_1))\right] = V^f(\pi_f)$

2. Test if $\hat{\pi} = \pi_{\hat{f}}$ is good: $V(\hat{\pi}) \geq V^f(\hat{\pi})$?

3. If it is, terminate and output $\hat{\pi}$

4. Otherwise, eliminate all f for which $\mathcal{E}^h(f, \hat{f}) \neq 0$ at some h

First observation: Each iteration requires few samples
Key issue: How many iterations?
Analysis

Bellman error matrix

Roll-in policies

\hat{f} survived previous rounds

\hat{f} doesn't predict $V(\pi_{\hat{f}})$

\hat{f} column is linearly independent of previous \Rightarrow # of iterations \leq matrix rank
Main result

Theorem: Sample complexity of OLIVE is $\text{poly}(\text{rank}, K, H, \log |\mathcal{F}|)$

$K =$ Number of actions, $H =$ Time horizon

- Handling statistical errors more complicated
- Uses geometric argument with ellipsoid volumes
- We call the complexity measure the **Bellman Rank**
When is Bellman rank small?

Finite/Tabular MDPs

Block MDPs (rich-obs MDPs)

Low rank dynamics (Linear MDP)

More in part 2!

Also

LQR control

Q^* preserving abstraction

Reactive PSRs
Summary for OLIVE

- New complexity measure: Bellman rank
- New algorithm: OLIVE with PAC analysis
 - Extensions: robustness, infinite function classes, etc.
- Recent progress:
 - Model-based version [SJKAL Colt 19]
 - \sqrt{T} regret [DPWZ arXiv 19]
- **But** not computationally efficient!
 - NP-hard even in tabular case [DJKALS NeurIPS 18]
State decoding in Block MDPs
Agent only observes rich context (visual signal)
Environment summarized by small hidden state space (agent location)
State can be decoded from observation
Contexts and transitions are stochastic
Goal: Reward free exploration, find policies that cover the state space
Deterministic case: Intuition

- Process is a large search tree
- Few hidden states => highly redundant!
- **Idea:** prune redundant paths

Key question: How to tell if two paths arrive at same state?

Depth H
Fanout K
Deterministic case: Intuition

Idea: Try to predict previous action from current context

For each action a:
- From start, try a, observe next context x
- Add example x with label a to dataset
- Train classifier on collected dataset

If classifier has trivial performance, can prune paths!
Classifier can also decode hidden state.

$$f() = \begin{array}{c} \text{L} \\ \text{R} \end{array}$$
Deterministic case: Algorithm

Given paths for level $h - 1$

- For each path p:
 - follow p, take a uniformly and observe x.
 - Add example x with label (p, a) to dataset
- Train classifier

$$f(\quad) = \begin{cases} 0.97 & \quad (p_1, L)(p_1, R)(p_2, L)(p_2, R) \\ \end{cases}$$

- Prune redundant paths
Stochastic Case: Algorithm

Given paths for level $h - 1$

- For each path p:
 - Follow p, take a uniformly and observe x.
 - Add example x with label (p, a) to dataset.
 - Use decoder to predict s.

- Train classifier.
- Prune redundant paths.
 - Cluster classifier outputs to get next decoder.
 - Fit transition model on hidden states.
 - Compute policies to visit all hidden states.

Changes
- Replace paths with policies.
- Classifier from previous level decodes hidden state to give supervision.
- Next decoder obtained by clustering.
- Then use model-based planning.

$p(a), (s, a) \rightarrow f(data) = \text{decoder}$
Guarantees

Theorem: PCID can find policy cover with \(\text{poly}(M,K,H) \) samples in polynomial time, with \(H \) calls to supervised learning black box.

\(M = \text{Number of hidden states}, \ K = \text{Number of actions}, \ H = \text{Time horizon} \)

Assumptions

- Supervised learner expressive enough: essentially can decode \(s \) from \(x \)
- Latent states reachable and identifiable
Define backward probability

\[b_\nu(s, a \mid s') = \frac{p(s' \mid s, a)\nu(s, a)}{\sum_{\tilde{s}, \tilde{a}} p(s' \mid \tilde{s}, \tilde{a})\nu(\tilde{s}, \tilde{a})} \]

Probability of coming from \((s, a)\) given we are in \(s'\) now, and marginal is \(\nu\).

Margin:

\[\gamma = \min_{s', s''} \| b_{unif}(s') - b_{unif}(s'') \|_1 \]

- Our classifier is exactly learning \(b(s')\): margin enables clustering!
- Sample complexity is actually \(poly(M, K, H, 1/\mu_{\min}, 1/\gamma)\).
- Margin is always constant for deterministic latent transitions
Experiment Setup

Combination lock environment
- Two good states per time, one bad state
- Good action different at each good state/time
 - Transitions stochastically to a good state at next time
- Baselines operate on small hidden state space directly
- Our method operates on rich observations (different in each experiment)
Experiment #1

- Deterministic latent transitions
- Rich observations: one-hot state encoding padded with random coin flips
- PCID uses linear model
Experiment #2

- Stochastic hidden transitions
- Rich observations: one-hot state encoding with additive Gaussian noise
- PCID uses linear model
Experiment #3

- Stochastic hidden transitions
- Rich observations: one-hot state encoding with additive Gaussian noise
- PCID uses neural network as supervised learner
Summary and Next Steps

- PCID: New decoding-based algorithm for Block-MDPS
 - Provably sample and computationally efficient
- OLIVE: General purpose algorithm for wide class of environments
 - Sample efficient but not computationally efficient.

A practical, provably sample efficient algorithm that scales to Deep RL benchmarks?

OLIVE: https://arxiv.org/abs/1610.09512
PCID: https://arxiv.org/abs/1901.09018

Thanks!